Skip to main content

water

THE BIG FLOOD

In 2011, a massive flood swept through the Lockyer Creek valley in southeast Queensland, Australia. The environmental, economic, and geomorphic impacts were immense, and Australian geoscientists immediately set out to document, understand, and contextualize them. The “Big Flood” project, led by Jacky Croke, has already produced 19 scientific journal articles, and they just this week went live with their web site, with numerous resources for scientists, managers, and the general public.

Floodwaters in Grantham, QLD, 2011 (http://www.thebigflood.com.au/whathappened.html)

The project has already produced some novel results with respect to flood geomorphology and hydrology, and is unique as far as I know with respect to direct efforts to integrate geoscience research with public policy, public education, and practical land and water resource management.

I recommend you check it out.

THE TAO OF THE RIVER

When more rain falls than the soil can absorb or plants can use, it has to go somewhere, and that movement is driven by gravity. Because concentrated flows are more efficient than sheet flows, concentrated and channelized flow paths are more likely to occur than diffuse flows. These pathways are also more likely to be reused, and to be enhanced by erosion associated with those flows. Similarly, when two of these threads of flow meet, they typically combine (less total surface area for the same amount of water = greater efficiency). Thus these channelized flows tend to form branching channel networks.

The formation of stream and river channels and networks is thus an emergent property of efficiency selection--those most efficient flow paths are more likely to arise in the first place and to be preserved and enhanced. The fact that most of these systems eventually lead to the sea (though globally, a surprisingly large minority drain to interior continental basins) is due to the fact that the flows are gravity driven, and for water, the ocean is the low point.

BEDROCK CHANNEL EROSION

There are four main mechanisms of bedrock channel erosion—abrasion, dissolution, cavitation, and weathering-and-plucking. The latter occurs when weathering along joints and bedding planes of the bedrock loosens slabs or clasts, which are then entrained (plucked) during high flows. Cavitation is difficult to observe or prove in the field, but likely occurs in the stream I visited this week, Raven Run (near Lexington, KY). The other mechanisms all clearly exist.

Weathering and plucking is the dominant erosion mechanism of the bedrock streams hereabouts—the photo shows the flat surfaces and angular features that result from weathering along the horizontal bedding planes of the limestone and the frequent vertical joints, and subsequent removal of the resulting slabs.

Raven Run, Kentucky.

 

Texas Riparian Areas

Texas A&M University Press has recently published Texas Riparian Areas. According to TAMU Press's blurb: 

Riparian areas—transitional zones between the aquatic environments of streams, rivers and lakes and the terrestrial environments on and alongside their banks—are special places. They provide almost 200,000 miles of connections through which the waters of Texas flow. Keeping the water flowing, in as natural a way as possible, is key to the careful and wise management of the state’s water resources.





Texas Riparian Areas evolved from a report commissioned by the Texas Water Development Board as Texas faced the reality of over-allocated water resources and long-term if not permanent drought conditions. Its purpose was to summarize the characteristics of riparian areas and to develop a common vocabulary for discussing, studying, and managing them.

Bank Full Of It

Fluvial geomorphologists, along with hydrologists and river engineers, have long been concerned with the flows or discharges that are primarily responsible for forming and shaping river channels. In the mid-20th century it was suggested that this flow is associated with bankfull stage—the stage right at the threshold of overflowing the channel—and that this occurs, on average, about every year or two in humid-climate perennial streams. If you have to choose just one flow to fixate on—and sometimes you do, for various management, design, and assessment purposes—and have no other a priori information about the river, bankfull is indeed the best choice. But, of course, nature is not that simple.

Fluviodiversity

One of the classic principles/relationships in biogeography is called the species-area curve, relating the number of different species found (usually of some particular taxonomic group; e.g., birds or plants) to the area sampled. These curves are usually well fit by an exponential relationship:

S = c A b

where S is the number of species, A is area, c is a constant representing the number of species in the smallest area sampled, and b represents the rate of increase of species with area. While b could be greater than 1 if major biogeographical boundaries are transgressed (so that whole new sets of species are encountered), otherwise b < 1, and usually much less; 0.25 is a fairly common value.

Juanjo Ibanez and I (in separate studies) found that similar trends apply to soil diversity, with S in this case indicating number of different soil types (e.g., soil series). In his very broad scale analyses, Juanjo also found b » 0.25, while in my landscape-scale studies b was in the range of 0.6.  Syntheses of this work are found in the book Pedodiversity (CRC Press, 2013) edited by Ibanez and James Bockheim.

Why Them? Why There?

In Johnson County, Kentucky, today, lots of people along Patterson Creek are wondering “why me?”  A flash flood Monday (July 13) tore through that eastern Kentucky community, leaving three people dead, a dozen missing at one point, and destroying about 150 homes and who knows how many cars, barns, etc. (news story).

As a Kentuckian, and as a veteran of a couple of hurricanes back in 1996 in North Carolina, I sympathize with wondering why you, or your community, got hit while others didn’t. As a geomorphologist and hydrologist who was worked on flash flooding in the southern Appalachians, I also wonder about the scientific aspects—why the severe flood event in this particular location?

Make no mistake—the area around Flat Gap is not the only one in Kentucky that has gotten a lot of rain recently, and high water, runoff, soil erosion, and filled-up sinkholes are common lately throughout eastern and central Kentucky. But why the much more severe flooding at Patterson Creek?

Did they get more rain?

Makin' It Rain

  No, not like this.

Dang, it’s been raining a lot lately.  Today, for instance, here in Mercer County, Kentucky, Herrington Lake’s level has risen almost 2 m in the last two weeks. Discharge of the Dix River has topped 1000 cfs (28.3 cms) twice in the past week, where the mean flow for early July is about 40 cfs (1.1 cms) over the past 71 years. We had another gully-washer, frog-choker rainstorm this morning.

If it seems to have been an unusually wet summer here in Kentucky, you’re right. The graphic below shows departures from normal (mean) rainfall totals for June. That pinkish blob in north-central Kentucky, showing 8 inches (203 mm) above normal is the Lexington area.

This follows a wet spring hereabouts. Below is the departure-from-normal precipitation map for April, 2015, a month in which one-day precipitation records were set in Lexington, Frankfort, and Louisville.

So is there a point, other than griping about a wet spring and summer?

Froude for Thought

The Froude number is a hydraulic parameter often used to relate aquatic habitats and biotopes to flow intensity. Independently of some trenchant critiques (see, e.g., Clifford et al. 2006), there seems to be no inherent hydrological, geomorphological, or ecological reason that the Froude number (Fr) should be the best indicator of habitat or ecological niches.

Fr is a dimensionless number that describes flow regimes in open channels and is unquestionably useful in many aspects of hydrology, geomorphology, and engineering. It is the ratio of inertial and gravitational forces:

Fr = V/(g d)0.5

Fr < 1 indicates subcritical or tranquil, and Fr > 1 supercritical or rapid flow. But variations in Fr within the subcritical range (where it typically falls) can be significantly related to, e.g., geomorphic units and habitats within channels.

Shawnee Run, Kentucky

Subscribe to water