Skip to main content

Department of Geography Colloquium

We will be hosting a Faculty Short Takes Talk featuring:

Rich Schein (Racialized Landscapes)

Rich Donohue (Hanging out in Public Bathrooms)

Lynn Phillips (Tree Hugging for Urban Forestry)

Nick Lally (Mapping Imaginaries).  

Short takes will be 8 minutes with time for Q&A about the great work these faculty are doing in Geography!  


Date:
Location:
UKFCU Esports Theater

ESL: ENGLISH AS THE SCIENTIFIC LANGUAGE

As much as we’d like to think otherwise, the facts (data, analyses, results, observations) do not speak for themselves. As scientists and educators, we are obliged to explain and interpret the facts; to attach meaning to them. As things have come to pass in the scientific world, we are obliged to speak for the facts in English. 

This post was inspired by a discussion posted on researchgate.net by Alejandro Bortolus of the Centro Nacional Patagonico (Argentina): Is the use of English in scientific articles a real need for an international working language, or a sign of long-lasting Colonialism? The lively discussion can be accessed here.

You can’t rely on me for a comprehensive and coherent summary of the comments and reactions, but some key themes are:

•The (obvious) advantages of having a single lingua franca to support global scientific communication. 

CAN FORESTS BUILD ARGILLIC HORIZONS?

Spoiler alert--the answer is: maybe, but I’m not sure.

Argillic horizons are subsoil layers that are enriched in silicate clays. I have long been interested in soil morphology as it relates to argillic horizons. First, it was with respect to soil erosion. As these horizons are by definition formed below the surface, their exposure at or near the ground surface indicates removal of overlying soil. To the extent soils have a characteristic depth, or range of depths, to the top of the argillic horizon, then variations in DTA (depth to argillic) can indicate erosion or deposition. I used this to study soil erosion in the North Carolina coastal plain and piedmont in the late 1980s and 1990s, and in the Ouachita Mountains of Arkansas in the 2000s and 2010s.

Multiple argillic horizons in a Kandiustult in Zambia (source: https://www.uidaho.edu/cals/soil-orders/ultisols).

CRISES & OPPORTUNITIES ON INFINITE EARTHS

Some incomplete thoughts and notes on Earth surface system (ESS) evolutionary pathways, focusing on how to think about the enormous variety and large number of possibilities.

 

ESS encompasses geomorphic and soil landscapes, hydrological systems, and ecosystems. There exists a huge variety of them on our planet. Assuming we could ever inventory or even estimate them all, we can define NESS  as the number of ESS. For each of these multiple possible evolutionary pathways exist. So we define

Ni(p) = number of possible evolutionary pathways for each of i = 1, 2, . . . , NESS.

Image credit: Turbosquid.com

At any given point in history there were multiple potential evolutionary possibilities, such that Nglobal(p) = number of total possible pathways = Σ Ni(p). However, only one history has occurred for each individual ESS, so that the number of actual past pathways now manifest = NESS.

STRUCTURAL REDUNDANCY IN BIOGEOMORPHOLOGY

In ecological systems, structural redundancy refers to the extent to which more than one species (or taxanomic group) can perform a given function or play a given role in the system. Microbial communities or ecosystems, for instance, tend to have high structural redundancy at the species level, as there usually exists multiple bacteria or other microbes that can, say, break down specific forms of organic matter, reduce iron, precipitate calcium, or what have you. Systems with a single keystone species have low redundancy, at least with respect to whatever the keystone organism does (if something else could perform the same function, then it would not be a keystone). Redundancy tends to be inversely correlated to the degree of biotic specialization, and directly related to ecosystem resilience. 

STORE & POUR

Just published in Catena: Store and Pour: Evolution of Flow Systems in Landscapes (vol. 216, paper number 106357). The abstract is below, and the article is attached.

This continues my effort to figure out why certain "optimal" configurations appear recurrently in nature, despite the fact that most environmental entities have no intentionality, and that these must be emergent phenomena--accidental agency, if you will. This recognizes some similarities in the development of flow systems in terms of dual-porosity in soil and groundwater (preferential flow patterns and matrix), dendritic fluvial channel networks, and other hydrological (and related geomorphological and ecological) phenomena. It's really pretty simple, as reflected in the figure below (Fig. 4 from the published paper).

 

Subscribe to