geography

HURRICANE MATTHEW & FOREST BIOGEOMORPHOLOGY

Hurricane Matthew devastated Haiti and other Caribbean areas, and did tremendous damage in Florida and South Carolina (I rode out the storm in Myrtle Beach, SC with my son Nate, his wife Morgan, and my delightful 2-year-old granddaughter Caroline). By the time it got to North Carolina, winds were down to gale force, but rain was ferocious (15 to 40 cm) in much of eastern N.C. Where I am at the moment, in Croatan, there was "only" about 10 cm of rain, and only gale force winds. However, that was enough, as it usually is, to get some geomorphic work done in the forest.

Below are some photos of trees uprooted by the storm in Croatan National Forest in the Flanner Beach area. Uprooting not only does significant soil mixing, but the pit-mound topography left behind significantly influences hillslope and soil processes for decades (and occasionally longer) thereafter.

Another example from a cemetery near Maysville, N.C.

Tips for NSF proposals in the Social Sciences

Dr. Jeffrey Mantz will go through the basics of NSF applications, talk about specific programs, and give some general grant writing advice. Mantz is Program Director in Cultural Anthropology and Human Subjects Research Officer at the National Science Foundation, where he has served since 2012. He holds a PhD in Anthropology from the University of Chicago and has previously taught at George Mason University, Cornell University, California State University at Stanislaus, and Vassar College. His own research takes him to the Caribbean and Central Africa, where he explores issues related to inequality, resource extraction, and commodity supply chains.

Date: 
Thursday, September 22, 2016 - 12:00pm to 1:30pm
Location: 
18th Floor, Patterson Office Tower
Type of Event (for grouping events):

The Perpetual Quest for Efficiency Part 3: Why Isn’t Everything Always Becoming More Efficient?

(Part 1 here; Part 2 here)

The principle of gradient selection, along with a variety of “optimality” principles in geomorphology, geophysics, hydrology, and ecology (e.g., Patten, 1995; Fath et al., 2001; Lapenis, 2002; Ozawa et al., 2003; Kleidon et al., 2010; Quijano and Lin, 2014), is in essence a particular case of a broader principle of efficiency selection. Given this common behavior in many types of Earth surface systems, why do we not observe a general global trend toward ever more efficient routes and networks of flows?

First, note that gradient and efficiency selection are tendencies that (like natural selection in biological evolution) apply in the aggregate, and not to individual cases. Also recall from part 2 that gradient selection is imperfect even where it operates.

The Perpetual Quest for Efficiency Part 2: Gradient and Morphological Selection

(Part 1 here)

Gradient Selection

Preferential flow phenomena are specific cases of what Phillips (2010, 2011) called the principle of gradient selection: the most efficient flux gradients are preferentially utilized, preserved, and replicated. Gradient selection is based on the  twofold notion that (1) the most efficient potential flow paths are preferentially selected; and (2) use of or flow along these paths further enhances their efficiency and/or contributes to their preservation. While Phillips (2010) was concerned with hydrologic flows and geomorphic processes, the evolution of preferential flow paths by gradient selection has broader applicability.

The Perpetual Quest for Efficiency and Stability in Earth Surface Systems

Fluxes of mass and energy in hydrological and geomorphological processes, and in environmental systems in general, preferentially select and reinforce the most efficient pathways. In doing so, they also tend to selectively preserve the most stable and resistant materials and structures, and remove the weaker and unstable ones. This suggests that Earth surface systems should generally evolve toward more efficient flux paths and networks, and a prevalence of stable and resistant forms. The purpose of this essay is to explore why the attractor condition of maximum efficiency and stability is not fully attained.

Numerous theories, hypotheses, and conceptual frameworks exist in geosciences that predict or seek to explain the development of flow paths in Earth surface systems (ESS). These include so-called “extremal” principles and the least action principle in hydrology and fluvial geomorphology, principles of preferential flow in hydrology, constructal theory, and various optimality principles in geophysics and ecology.

Introduction to New Maps Plus

Why New Maps Plus?

The New Maps Plus graduate programs at the University of Kentucky offer students a challenging, intensive, digital mapping curriculum that emphasizes the acquisition of technical skills—coding, GIS, web development—while also preparing students to critically address the complexity of today’s information ecosystem.

Read more about how New Maps Plus is unique: newmapsplus.uky.edu/all-about

CONTINGENT ECOSYSTEM ENGINEERING

Many biogeomorphic ecosystem engineer organisms exert their biogeomorphic effects through intrinsic activities and behaviors that occur wherever the organism occurs. Ants, earthworms, sphagnum mosses, and marsh grasses, for example are going to have the same qualitative ecosystem engineering impacts wherever they occur. In other cases, however, biogeomorphic impacts may differ (or even occur) in different geomorphic settings or habitats. This can be called contingent ecosystem engineering, because the effects are contingent on the environmental setting. For example, beavers build dams to create suitable pond habitats, with attendant geomorphic effects on streams. However, where water is deep enough (that is, there is suitable habitat without damming a stream), they don’t bother building dams or lodges (though they do have different biogeomorphic impacts, via burrowing into banks for their lodges). Thus the ecosystem engineering impacts are contingent on the hydrophysical properties of the stream. An example of an organism where the existence (not just the nature or degree) of biogeomorphic effects is contingent is the sulfate reducing bacterium Desulfovibrio desulfuricans. This microbe is found in soil, water, and living organisms in a wide variety of settings.

SOIL DEEPENING BY TREES

Where soils are relatively shallow, tree roots penetrate into the underlying bedrock through joints and fractures and promote weathering by funneling water into the rock, and facilitating chemical weathering. In addition to these processes, mass displacement by tree growth and bedrock "mining" by tree uprooting help deepen soils and regoliths. While this ihas been demonstrated in several studies, it was unclear the extent to which these processes occur where the bedrock is flat-bedded sedimentary rocks, which offter fewer vertically oriented joints for root access. Soil deepening by trees and the effects of parent material addresses this question (yes, the same general processes do occur in horizontally-bedded rocks). The paper, just out in Geomorphology (vol. 269, p. 1-7) by (mostly) Michael Shouse and myself, also provides some heretofore unprecedented spatial resolution on the spatial variability of soil & regolith thickness attributable to effects of individual trees. The abstract is below. 

Eighth Summer Institute in Economic Geography Held at UK

The University of Kentucky College of Arts and Scienceslast week hosted the Summer Institute in Economic Geography. With a 10-year history in supporting economic geography, the college and its Department of Geography welcomed young scholars from across the globe to Lexington. This is the first time the institute has returned to the U.S. since 2006 when it was hosted by the University of Wisconsin at Madison.

 

Tags:

Pages

Subscribe to RSS - geography
X
Enter your linkblue username.
Enter your linkblue password.
Secure Login

This login is SSL protected

Loading