
Complexity	of	Raster	Spatial	Adjacency	Graphs	
	
In	a	spatial	adjacency	graph	(SAG)	the	graph	nodes	or	vertices	are	nominal	or	
categorical	spatial	entities—for	example	soil	types,	landform	types,	geological	
formations,	or	vegetation	communities.	Here	we	will	just	call	them	
environmental	units	(EU).	Any	two	nodes	are	connected	(i.e.,	there	exists	link	
between	them)	if	they	are	spatially	contiguous.	Thus,	if	EU	types	A	and	B	at	least	
sometimes	occur	adjacent	to	each	other,	they	are	connected,	and	if	they	never	
occur	spatially	adjacent	to	each	other,	there	is	no	edge	connecting	A,	B.	In	the	
SAGs	analyzed	by	Phillips	(2013),	for	instance,	connectivity	or	spatial	adjacency	
was	based	on	whether	soil	types	(taxa)	occurred	within	the	same	mapping	unit,	
or	in	mapping	units	with	shared	boundaries.	In	Phillips	(2016)	a	SAG	was	
constructed	based	on	contiguity	of	mapping	units	themselves	as	represented	in	
digital	soil	maps.	SAGs	have	also	been	applied	to	landform	types	and	coastal	
environments	(Phillips,	2018).		

SAGs	are	intermediate	between	spatially	explicit	graphs,	where	nodes	represent	
specific	locations,	and	structural	graphs,	where	nodes	represent	system	
components	(most	state-and-transition	models,	for	instance,	can	be	represented	
as	structural	graphs)(Heckmann	et	al.,	2015).	In	this	note	I	address	a	spatially	
explicit	form	of	SAGs,	based	on	raster	representation	of	categorical	spatial	units.		

Assuming	that	each	raster	cell	is	assigned	to	a	single	category,	the	categories	are	
considered	connected	where	they	occur	in	adjacent	cells.	Note	that	the	
categories	(landforms,	vegetation,	soil	types,	etc.)	are	the	nodes	or	vertices	of	the	
graph,	not	the	raster	cells.	But	rather	than	two	environmental	types	being	
considered	connected	if	they	ever	occur	contiguously,	in	this	case	a	link	is	
defined	if	every	case	that	they	occur	in	contiguous	cells.	For	example,	assume	
there	are	nine	environmental	units	or	categories,	X1,	X2,	.	.	.	,	X9.	In	the	top	of	
Figure	1,	there	are	8	links	associated	with	X5,	because	there	are	eight	contiguous	
cells	with	different	EUs.	In	the	middle	there	are	no	links,	as	all	the	cells	are	the	
same	type.	In	the	lower	part	of	Fig.	1,	six	links	are	associated	with	the	X5	cell	in	
the	middle.		



	

Figure	1.		Explanatory	diagram.	Number	of	links	(shaded)	for	the	X5	cell	in	the	
middle	is	8	for	the	top,	0	for	the	center,	and	6	for	the	bottom	example.	

The	method	in	this	note	based	on	algebraic	graph	theory	and	the	analysis	of	
graph	adjacency	matrices.	An	adjacency	matrix	for	a	network	with	N	nodes	(in	
this	case	N	EUs)	is	an	N	x	N	matrix	with	cell	entries	of	zero	if	the	row	and	column	
nodes	are	unconnected,	and	nonzero	otherwise.	In	this	case	cell	values	indicate	
the	number	of	cases	where	cells	of	the	row	and	column	EU	are	spatially	
contiguous,	and	0	otherwise	(by	convention,	diagonal	entries	are	zero).		

The	largest	eigenvalue (λ1) of	the	adjacency	matrix	is	the	graph	spectral	radius.	
Spectral	radius	is	a	key	indicator	of	many	network	properties;	particularly	graph	
complexity. λ1	is	sensitive	to	the	number	of	cycles	in	the	graph	(sequences	of	
edges	that	begin	and	end	at	the	same	node),	and	is	inversely	related	to	critical	
coupling	strength,	a	threshold	at	which	a	graph	transitions	from	incoherent	to	



coherent	behavior	(Restrepo	et	al.,	2006,	2007).	While	coherence	is	not	directly	
relevant	to	SAGs,	this	property	reflects	the	fact	that	spectral	radius	is	an	
indicator	of	graph	complexity	(see,	e.g.,	Fath,	2007;	Phillips,	2011a,	2011b).		

Now	we	define:		

N	=	number	of	EUs	=	number	of	graph	nodes	
A	=	size	of	domain	(e.g.,	area)	=	nx	
n	=	number	of	raster	cells	
x	=	minimum	sample,	observation,	or	classification	unit	(e.g.,	cell	size)	
Nmax	=	A/x	(each	sample	or	cell	is	unique)	
m	=	number	of	identified	links	
mmax	=	number	of	links	for	case	of	Nmax		
	
For	a	typical	rectangular	raster,	mmax	=	4n	since	every	link	is	associated	with	two	
cells.	This	can	be	worked	out	for	other	raster	geometries;	for	a	hexagonal	model,	
for	instance,	mmax	=	3n.	This	assumes,	for	convenience,	that	there	is	an	extra	layer	
(row	or	column)	of	pixels	around	the	edge	of	the	study	area	that	are	not	included	
as	part	of	A	or	n.	If	not,	appropriate	adjustments	must	be	made	for	the	reduced	
adjacency	possibilities	of	edge	pixels.		
	
The	most	complex	spatial	pattern	would	occur	where	every	cell	has	a	different	
EU,	such	that	m	=	mmax	and	N	=	Nmax.	The	upper	limit	of	the	spectral	radius	for	a	
graph	of	a	given	N,	m	is	

λ1,upper	=	[2m(N-1)/N]0.5	

Thus	we	can	compute	the	reduction	in	complexity	associated	with	having	
adjacent	cells	with	the	same	EU	as	

λ1,upper/λ1,max	=	[2m(N-1)/N]0.5	/	[8Nmax	(Nmax-1)/Nmax]0.5	
	

Note	that	this	implies	with	constant	N,	m,	A,	the	ratio	varies	as	the	square	root	of	
cell	size	(x0.5).	
	
The	observed	spectral	radius	λ1	<	λ1,upper.		For	the	observed	spatial	pattern	we	can	
then	compute	the	proportion	of	complexity	associated	with	having	N	<	Nmax		and	
m	<	mmax	(variability	of	EUs,	or	ev),	and	that	associated	with	the	specific	spatial	
pattern	of	adjacency	(the	“wiring”	of	the	graph).		
	
ζev	=	(λ1,max	-	λ1,upper)/	(λ1,max	-	λ1)	
	
ζwiring	=	1	-	ζev	
	

Worked	example	
	
Suppose	we	have	a	1	km2	study	area	with	10	X	10	m	pixels,	with	a	total	of	10,000	
cells.	There	are	20	EUs,	and	the	observed		m	is	1000,	and	the	spectral	radius	is	
10.00.	Thus	we	have	N	=	20;	Nmax	=	n	=	10,000;	m	=	1000;	mmax	=	40,000.	Then	we	
have	λ1,upper/λ1,max	=	0.154;	ζev	=	0.877;	ζwiring	=	0.123.	For	this	hypothetical	



example	the	maximum	possible	complexity	for	a	graph	with	20	nodes	and	1000	
links	is	about	15	percent	of	that	associated	with	a	situation	where	each	of	the	
pixels	was	a	separate	EU.	Nearly	88	percent	of	the	order	(reduction	in	
complexity)	of	the	observed	pattern	compared	to	the	maximum	possible	is	due	
to	the	limited	number	of	EUs	actually	observed,	with	the	rest	owing	to	the	
specific	adjacency	pattern.			
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